
Midterm Exam Calculus 2

9 January 2025, 18:30-20:30

The midterm exam consists of 4 problems. You have 120 minutes to answer
the questions. You can achieve 100 points which includes a bonus of 10 points.

1. [5+5+10=20 Points] Let f : R2 → R be defined as

f(x, y) =

{
x3+y3

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

(a) Is f continuous at (x, y) = (0, 0)? Justify your answer.

(b) Let u = v i + w j ∈ R2 be a unit vector, i.e. v2 + w2 = 1. Determine the
directional derivative Duf(0, 0).

(c) Use the definition of differentiability to determine whether f is differentiable at
(0, 0).

2. [2+15+8=25 Points] Suppose the function F : R2 → R, (u, v) 7→ F (u, v) is of
class C1 and is such that F (−2, 1) = 0, Fu(−2, 1) = 7 and Fv(−2, 1) = 5. Let
G(x, y, z) = F (x3 − 2y2 + z5, xy − x2z + 3).

(a) Check that G(−1, 1, 1) = 0.

(b) Show that we can solve the equation G(x, y, z) = 0 for z in terms of x and y
(i.e., as z = g(x, y) for (x, y) near (−1, 1) so that g(−1, 1) = 1).

(c) For the function g in part (b), compute the partial derivatives gx and gy at
(x, y) = (−1, 1).

3. [20 Points] Heron’s formula for the area A of a triangle whose sides have lengths x,
y and z is

A =
√
s(s− x)(s− y)(s− z),

where s = 1
2
(x+y+z) is the so-called semiperimeter of the triangle. Use the Method

of Lagrange Multipliers to show that, for a fixed given perimeter p, the triangle with
largest area is equilateral. (Hint: in computations it can be convenient to consider
the squared area A2 rather than A.)

4. [25 Points] Let D be the region in the first quadrant of R2

enclosed by y = x4 and y = x as shown in the figure on the
right. For the vector field F : R2 → R2, (x, y) 7→ P (x, y) i +
Q(x, y) j = xy i+y2 j, show the following equality by computing
both sides of the equation:

¨
D

(
∂

∂x
Q− ∂

∂y
P

)
dA =

˛
C

P dx+Q dy,

where C is the piecewise smooth curve that forms the boundary
of D with the orientation indicated by the arrows in the figure.
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Solutions

1. (a) Using polar coordiantes (x, y) = (r cos θ, r sin θ) we get for r > 0,

f(r cos θ, r sin θ) =
r3 cos3 θ + r3 sin3 θ

r2 cos2 θ + r2 sin2 θ
= r(cos3 θ + sin3 θ)

which goes to 0 = f(0, 0) for r → 0. Hence f is continuous at (0, 0).

(b) By definition

Duf(0, 0) = lim
t→0

f(tv, tw)− f(0, 0)

t

= lim
t→0

t3v3+t3w3

t2v2+t2w2 − 0

t
= lim

t→0
v3 + w3

= v3 + w3.

(c) Choosing u = (1, 0) in part (b) we get fx(0, 0) = 1 and similarly choosing
u = (0, 1) we get fy(0, 0) = 1. The linearization of f at (0, 0) hence is

L(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = x+ y.

For the differentiability of f at (0, 0) we need to study the limit of

f(x, y)− L(x, y)

‖(x, y)‖

for (x, y)→ (0, 0). For (x, y) 6= (0, 0) we have

f(x, y)− L(x, y)

‖(x, y)‖
=

x3+y3

x2+y2
−(x+ y)

(x2 + y2)1/2
=
x3 + y3 − (x+ y)(x2 + y2)

(x2 + y2)3/2
.

Using polar coordinates we get for r > 0,

x3 + y3 − (x+ y)(x2 + y2)

(x2 + y2)3/2
=

r3 cos3 θ + r3 sin3 θ − (r cos θ + r sin θ)(r2 cos2 θ + r2 sin2 θ)

(r2 cos2 θ + r2 sin2 θ)3/2

= cos3 θ + sin3 θ − (cos θ + sin θ)

which for example, for θ = 0 gives 0 and for θ = π/4, gives
(

1√
2

)3
+
(

1√
2

)3
−(

1√
2

+ 1√
2

)
= − 1√

2
6= 0 and which hence no limit for r → 0.

We conclude that f is not differentiable at (0, 0).

2. (a) To check that G(−1, 1, 1) = 0, note that substituting x = −1, y = 1, z = 1 in
G(x, y, z) gives F ((−1)3 − 2(1)2 + (1)5, (−1)(1) − (−1)2(1) + 3) = F (−1 − 2 +
1,−1− 1 + 3) = F (−2, 1) = 0. So G(−1, 1, 1) = 0.

(b) As F is of class C1, G is of class C1 too. If ∂G
∂z

(−1, 1, 1) 6= 0 then the Implicit
Function Theorem gives that near the point (x, y, z) = (−1, 1, 1) the level set
S = {(x, y, z) ∈ R3|G(x, y, z) = 0} is locally a graph over the (x, y) plane, i.e.
there exists a neighbourhood U of (x, y) = (−1, 1) in R2 and a neighbourhood
V of z = 0 in R and a function g : (x, y) 7→ z = g(x, y) such that g(−1, 1) = 1



and if (x, y) ∈ U and z ∈ V satisfy G(x, y, z) = 0 then z = g(x, y).
At an arbitrary point (x, y, z) ∈ R3 we have

∂G

∂z
(x, y, z) =

∂F (u(x, y, z), v(x, y, z)

∂z

=
∂F

∂u
(u, v)

∂u

∂z
+
∂F

∂v
(u, v)

∂v

∂z
= Fu(u, v)5z4 + Fv(u, v)(−x2).

Filling in (u, v) = (−2, 1) and (x, y, z) = (−1, 1, 1) and using Fu(−2, 1) = 7 and
Fv(−2, 1) = 5

∂G

∂z
(−1, 1, 1) = 7 · 5 · 14 + 5 · (−(−1)2) = 30 6= 0 .

So we can apply the Implicit Function Theorem to prove the local existence of
the function g.

(c) From the Implicit Function Theorem we get

gx(−1, 1) = −
∂G
∂x

(−1, 1, 1)
∂G
∂z

(−1, 1, 1)

and

gy(−1, 1) = −
∂G
∂y

(−1, 1, 1)
∂G
∂z

(−1, 1, 1)
.

Similarly to part (b) we have

∂G

∂x
(x, y, z) =

∂F (u(x, y, z), v(x, y, z)

∂x

=
∂F

∂u
(u, v)

∂u

∂x
+
∂F

∂v
(u, v)

∂v

∂x
= Fu(u, v)3x2 + Fv(u, v)(y − 2xz).

Filling in (u, v) = (−2, 1) and (x, y, z) = (−1, 1, 1) and using Fu(−2, 1) = 7 and
Fv(−2, 1) = 5

∂G

∂x
(−1, 1, 1) = 7 · 3 · (−1)2 + 5 · (1− 2 · (−1) · 1) = 21 + 15 = 36 .

giving

gx(−1, 1) = −36

30
= −6

5
.

Similarly

∂G

∂y
(x, y, z) =

∂F (u(x, y, z), v(x, y, z)

∂y

=
∂F

∂u
(u, v)

∂u

∂y
+
∂F

∂v
(u, v)

∂v

∂y

= Fu(u, v)(−4y) + Fv(u, v)x.



Filling in (u, v) = (−2, 1) and (x, y, z) = (−1, 1, 1) and using Fu(−2, 1) = 7 and
Fv(−2, 1) = 5

∂G

∂y
(−1, 1, 1) = 7 · (−4) + 5 · (−1) = −28− 5 = −33 .

giving

gy(−1, 1) =
33

30
=

11

10
.

3. We use the method of Lagrange Multipliers to determine the largest area of the
triangle. The function g(x, y, z) = x + y + z gives the perimeter of a triangle with
side length x, y and z. The constraint is hence given by g(x, y, z) = p for a positive
constant p. It is convenient to find the extrema of A2 = s(s−x)(s− y)(s− z) rather
than A under the constraint. Formally this is justified by the fact that a 7→

√
a is a

continuous, positive, increasing function on [0,∞).

Let f(x, y, z) = s(s − x)(s − y)(s − z) where the semiperimeter s is given by s =
1
2
(x+ y + z) = p

2
. Applying the method of Lagrange Multipliers gives ∇f(x, y, z) =

λ∇g(x, y, z) with λ ∈ R and the constraint g(x, y, z) = p, i.e.

fx(x, y, z) = λgx(x, y, z)

fy(x, y, z) = λgy(x, y, z)

fz(x, y, z) = λgz(x, y, z)

x+ y + z = p

which is equivalent to

−s(s− y)(s− z) = λ (1)

−s(s− x)(s− z) = λ (2)

−s(s− x)(s− y) = λ (3)

x+ y + z = p (4)

Combining Equations (1) and (2) we see that −s(s− y)(s− z) = −s(s− x)(s− z),
so x = y. Combining (2) and (3) gives y = z, and hence x = y = z. (Looking
at Equations (1) and (3) would also give x = z.) Together with the constraint
x + y + z = p we get x = y = z = p

3
, where p is the perimeter of the triangle. So

for a fixed perimeter p, the triangle with largest area is equilateral (all sides of the
triangle have the same length).

4. (a) We start with the computation of the left hand side. We have

∂Q

∂x
− ∂P

∂y
= 0− x = −x.

Hence ¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

ˆ 1

0

ˆ x

x4

−x dy dx =

ˆ 1

0

−x(x− x4) dx

=

ˆ 1

0

(−x2 + x5) dx = −1

3
x3 +

1

6
x6
∣∣∣∣1
0

= −1

3
+

1

6
= −1

6
.



We now compute the right hand side of the equation. We have C = C1 ∪
C2 where C1 corresponds to the part of the bondary where y = x4 which has
parametrization r1(t) = (t, t4), 0 ≤ t ≤ 1. The tangent vector corresponding to
the parametrization r1 gives the desired orientation shown in figure. The part C2

corresponds to the part of the boundary where y = x which can be parametrized
by r2(t) =

(
1− t, 1− t

)
with 0 ≤ t ≤ 1. The tangent vector associated with r2

gives the desired orientation on C2 shown in the figure. Using r′1(t) = (1, 4t3)
and r′2(t) = (−1,−1), we get

˛
C

Pdx+Qdy =

ˆ 1

0

F(r1(t)) · r′1(t) dt+

ˆ 1

0

F(r2(t)) · r′2(t) dt

=

ˆ 1

0

(
t · t4, (t4)2

)
· (1, 4t3) dt+

ˆ 1

0

(
(1− t)(1− t), (1− t)2

)
· (−1,−1) dt

=

ˆ 1

0

(t5 + 4t11) dt+

ˆ 1

0

(
− 2(1− t)2

)
dt

=
1

6
+

4

12
+
(2

3
(1− t)3

)∣∣∣∣1
0

=
1

2
− 2

3

= −1

6

which agrees with the left hand side.


