

## Midterm Exam Calculus 2

9 January 2025, 18:30-20:30



university of  
groningen

The midterm exam consists of 4 problems. You have 120 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. [5+5+10=20 Points] Let  $f : \mathbb{R}^2 \rightarrow \mathbb{R}$  be defined as

$$f(x, y) = \begin{cases} \frac{x^3+y^3}{x^2+y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}.$$

- (a) Is  $f$  continuous at  $(x, y) = (0, 0)$ ? Justify your answer.
- (b) Let  $\mathbf{u} = v\mathbf{i} + w\mathbf{j} \in \mathbb{R}^2$  be a unit vector, i.e.  $v^2 + w^2 = 1$ . Determine the directional derivative  $D_{\mathbf{u}}f(0, 0)$ .
- (c) Use the definition of differentiability to determine whether  $f$  is differentiable at  $(0, 0)$ .

2. [2+15+8=25 Points] Suppose the function  $F : \mathbb{R}^2 \rightarrow \mathbb{R}$ ,  $(u, v) \mapsto F(u, v)$  is of class  $C^1$  and is such that  $F(-2, 1) = 0$ ,  $F_u(-2, 1) = 7$  and  $F_v(-2, 1) = 5$ . Let  $G(x, y, z) = F(x^3 - 2y^2 + z^5, xy - x^2z + 3)$ .

- (a) Check that  $G(-1, 1, 1) = 0$ .
- (b) Show that we can solve the equation  $G(x, y, z) = 0$  for  $z$  in terms of  $x$  and  $y$  (i.e., as  $z = g(x, y)$  for  $(x, y)$  near  $(-1, 1)$  so that  $g(-1, 1) = 1$ ).
- (c) For the function  $g$  in part (b), compute the partial derivatives  $g_x$  and  $g_y$  at  $(x, y) = (-1, 1)$ .

3. [20 Points] Heron's formula for the area  $A$  of a triangle whose sides have lengths  $x$ ,  $y$  and  $z$  is

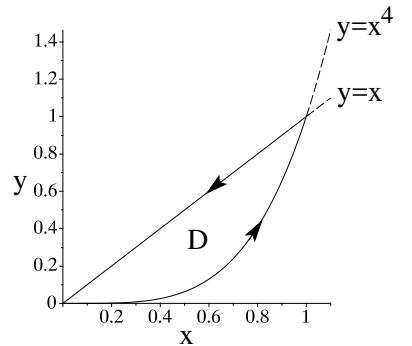
$$A = \sqrt{s(s-x)(s-y)(s-z)},$$

where  $s = \frac{1}{2}(x+y+z)$  is the so-called *semiperimeter* of the triangle. Use the Method of Lagrange Multipliers to show that, for a fixed given perimeter  $p$ , the triangle with largest area is equilateral. (Hint: in computations it can be convenient to consider the squared area  $A^2$  rather than  $A$ .)

4. [25 Points] Let  $D$  be the region in the first quadrant of  $\mathbb{R}^2$  enclosed by  $y = x^4$  and  $y = x$  as shown in the figure on the right. For the vector field  $\mathbf{F} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ ,  $(x, y) \mapsto P(x, y)\mathbf{i} + Q(x, y)\mathbf{j} = xy\mathbf{i} + y^2\mathbf{j}$ , show the following equality by computing both sides of the equation:

$$\iint_D \left( \frac{\partial}{\partial x} Q - \frac{\partial}{\partial y} P \right) dA = \oint_C P dx + Q dy,$$

where  $C$  is the piecewise smooth curve that forms the boundary of  $D$  with the orientation indicated by the arrows in the figure.



## Solutions

1. (a) Using polar coordinates  $(x, y) = (r \cos \theta, r \sin \theta)$  we get for  $r > 0$ ,

$$f(r \cos \theta, r \sin \theta) = \frac{r^3 \cos^3 \theta + r^3 \sin^3 \theta}{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = r(\cos^3 \theta + \sin^3 \theta)$$

which goes to  $0 = f(0, 0)$  for  $r \rightarrow 0$ . Hence  $f$  is continuous at  $(0, 0)$ .

(b) By definition

$$\begin{aligned} D_{\mathbf{u}} f(0, 0) &= \lim_{t \rightarrow 0} \frac{f(tv, tw) - f(0, 0)}{t} \\ &= \lim_{t \rightarrow 0} \frac{\frac{t^3 v^3 + t^3 w^3}{t^2 v^2 + t^2 w^2} - 0}{t} \\ &= \lim_{t \rightarrow 0} v^3 + w^3 \\ &= v^3 + w^3. \end{aligned}$$

(c) Choosing  $\mathbf{u} = (1, 0)$  in part (b) we get  $f_x(0, 0) = 1$  and similarly choosing  $\mathbf{u} = (0, 1)$  we get  $f_y(0, 0) = 1$ . The linearization of  $f$  at  $(0, 0)$  hence is

$$L(x, y) = f(0, 0) + f_x(0, 0)(x - 0) + f_y(0, 0)(y - 0) = x + y.$$

For the differentiability of  $f$  at  $(0, 0)$  we need to study the limit of

$$\frac{f(x, y) - L(x, y)}{\|(x, y)\|}$$

for  $(x, y) \rightarrow (0, 0)$ . For  $(x, y) \neq (0, 0)$  we have

$$\frac{f(x, y) - L(x, y)}{\|(x, y)\|} = \frac{\frac{x^3 + y^3}{x^2 + y^2} - (x + y)}{(x^2 + y^2)^{1/2}} = \frac{x^3 + y^3 - (x + y)(x^2 + y^2)}{(x^2 + y^2)^{3/2}}.$$

Using polar coordinates we get for  $r > 0$ ,

$$\begin{aligned} \frac{x^3 + y^3 - (x + y)(x^2 + y^2)}{(x^2 + y^2)^{3/2}} &= \frac{r^3 \cos^3 \theta + r^3 \sin^3 \theta - (r \cos \theta + r \sin \theta)(r^2 \cos^2 \theta + r^2 \sin^2 \theta)}{(r^2 \cos^2 \theta + r^2 \sin^2 \theta)^{3/2}} \\ &= \cos^3 \theta + \sin^3 \theta - (\cos \theta + \sin \theta) \end{aligned}$$

which for example, for  $\theta = 0$  gives 0 and for  $\theta = \pi/4$ , gives  $\left(\frac{1}{\sqrt{2}}\right)^3 + \left(\frac{1}{\sqrt{2}}\right)^3 - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}} \neq 0$  and which hence no limit for  $r \rightarrow 0$ .

We conclude that  $f$  is not differentiable at  $(0, 0)$ .

2. (a) To check that  $G(-1, 1, 1) = 0$ , note that substituting  $x = -1, y = 1, z = 1$  in  $G(x, y, z)$  gives  $F((-1)^3 - 2(1)^2 + (1)^5, (-1)(1) - (-1)^2(1) + 3) = F(-1 - 2 + 1, -1 - 1 + 3) = F(-2, 1) = 0$ . So  $G(-1, 1, 1) = 0$ .

(b) As  $F$  is of class  $C^1$ ,  $G$  is of class  $C^1$  too. If  $\frac{\partial G}{\partial z}(-1, 1, 1) \neq 0$  then the Implicit Function Theorem gives that near the point  $(x, y, z) = (-1, 1, 1)$  the level set  $S = \{(x, y, z) \in \mathbb{R}^3 | G(x, y, z) = 0\}$  is locally a graph over the  $(x, y)$  plane, i.e. there exists a neighbourhood  $U$  of  $(x, y) = (-1, 1)$  in  $\mathbb{R}^2$  and a neighbourhood  $V$  of  $z = 0$  in  $\mathbb{R}$  and a function  $g : (x, y) \mapsto z = g(x, y)$  such that  $g(-1, 1) = 1$

and if  $(x, y) \in U$  and  $z \in V$  satisfy  $G(x, y, z) = 0$  then  $z = g(x, y)$ .  
At an arbitrary point  $(x, y, z) \in \mathbb{R}^3$  we have

$$\begin{aligned}\frac{\partial G}{\partial z}(x, y, z) &= \frac{\partial F(u(x, y, z), v(x, y, z))}{\partial z} \\ &= \frac{\partial F}{\partial u}(u, v) \frac{\partial u}{\partial z} + \frac{\partial F}{\partial v}(u, v) \frac{\partial v}{\partial z} \\ &= F_u(u, v)5z^4 + F_v(u, v)(-x^2).\end{aligned}$$

Filling in  $(u, v) = (-2, 1)$  and  $(x, y, z) = (-1, 1, 1)$  and using  $F_u(-2, 1) = 7$  and  $F_v(-2, 1) = 5$

$$\frac{\partial G}{\partial z}(-1, 1, 1) = 7 \cdot 5 \cdot 1^4 + 5 \cdot (-(-1)^2) = 30 \neq 0.$$

So we can apply the Implicit Function Theorem to prove the local existence of the function  $g$ .

(c) From the Implicit Function Theorem we get

$$g_x(-1, 1) = -\frac{\frac{\partial G}{\partial z}(-1, 1, 1)}{\frac{\partial G}{\partial z}(-1, 1, 1)}$$

and

$$g_y(-1, 1) = -\frac{\frac{\partial G}{\partial y}(-1, 1, 1)}{\frac{\partial G}{\partial z}(-1, 1, 1)}.$$

Similarly to part (b) we have

$$\begin{aligned}\frac{\partial G}{\partial x}(x, y, z) &= \frac{\partial F(u(x, y, z), v(x, y, z))}{\partial x} \\ &= \frac{\partial F}{\partial u}(u, v) \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v}(u, v) \frac{\partial v}{\partial x} \\ &= F_u(u, v)3x^2 + F_v(u, v)(y - 2xz).\end{aligned}$$

Filling in  $(u, v) = (-2, 1)$  and  $(x, y, z) = (-1, 1, 1)$  and using  $F_u(-2, 1) = 7$  and  $F_v(-2, 1) = 5$

$$\frac{\partial G}{\partial x}(-1, 1, 1) = 7 \cdot 3 \cdot (-1)^2 + 5 \cdot (1 - 2 \cdot (-1) \cdot 1) = 21 + 15 = 36.$$

giving

$$g_x(-1, 1) = -\frac{36}{30} = -\frac{6}{5}.$$

Similarly

$$\begin{aligned}\frac{\partial G}{\partial y}(x, y, z) &= \frac{\partial F(u(x, y, z), v(x, y, z))}{\partial y} \\ &= \frac{\partial F}{\partial u}(u, v) \frac{\partial u}{\partial y} + \frac{\partial F}{\partial v}(u, v) \frac{\partial v}{\partial y} \\ &= F_u(u, v)(-4y) + F_v(u, v)x.\end{aligned}$$

Filling in  $(u, v) = (-2, 1)$  and  $(x, y, z) = (-1, 1, 1)$  and using  $F_u(-2, 1) = 7$  and  $F_v(-2, 1) = 5$

$$\frac{\partial G}{\partial y}(-1, 1, 1) = 7 \cdot (-4) + 5 \cdot (-1) = -28 - 5 = -33.$$

giving

$$g_y(-1, 1) = \frac{33}{30} = \frac{11}{10}.$$

3. We use the method of Lagrange Multipliers to determine the largest area of the triangle. The function  $g(x, y, z) = x + y + z$  gives the perimeter of a triangle with side length  $x, y$  and  $z$ . The constraint is hence given by  $g(x, y, z) = p$  for a positive constant  $p$ . It is convenient to find the extrema of  $A^2 = s(s - x)(s - y)(s - z)$  rather than  $A$  under the constraint. Formally this is justified by the fact that  $a \mapsto \sqrt{a}$  is a continuous, positive, increasing function on  $[0, \infty)$ .

Let  $f(x, y, z) = s(s - x)(s - y)(s - z)$  where the semiperimeter  $s$  is given by  $s = \frac{1}{2}(x + y + z) = \frac{p}{2}$ . Applying the method of Lagrange Multipliers gives  $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$  with  $\lambda \in \mathbb{R}$  and the constraint  $g(x, y, z) = p$ , i.e.

$$\begin{aligned} f_x(x, y, z) &= \lambda g_x(x, y, z) \\ f_y(x, y, z) &= \lambda g_y(x, y, z) \\ f_z(x, y, z) &= \lambda g_z(x, y, z) \\ x + y + z &= p \end{aligned}$$

which is equivalent to

$$-s(s - y)(s - z) = \lambda \quad (1)$$

$$-s(s - x)(s - z) = \lambda \quad (2)$$

$$-s(s - x)(s - y) = \lambda \quad (3)$$

$$x + y + z = p \quad (4)$$

Combining Equations (1) and (2) we see that  $-s(s - y)(s - z) = -s(s - x)(s - z)$ , so  $x = y$ . Combining (2) and (3) gives  $y = z$ , and hence  $x = y = z$ . (Looking at Equations (1) and (3) would also give  $x = z$ .) Together with the constraint  $x + y + z = p$  we get  $x = y = z = \frac{p}{3}$ , where  $p$  is the perimeter of the triangle. So for a fixed perimeter  $p$ , the triangle with largest area is equilateral (all sides of the triangle have the same length).

4. (a) We start with the computation of the left hand side. We have

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0 - x = -x.$$

Hence

$$\begin{aligned} \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA &= \int_0^1 \int_{x^4}^x -x \, dy \, dx = \int_0^1 -x(x - x^4) \, dx \\ &= \int_0^1 (-x^2 + x^5) \, dx = -\frac{1}{3}x^3 + \frac{1}{6}x^6 \Big|_0^1 \\ &= -\frac{1}{3} + \frac{1}{6} = -\frac{1}{6}. \end{aligned}$$

We now compute the right hand side of the equation. We have  $C = C_1 \cup C_2$  where  $C_1$  corresponds to the part of the boundary where  $y = x^4$  which has parametrization  $\mathbf{r}_1(t) = (t, t^4)$ ,  $0 \leq t \leq 1$ . The tangent vector corresponding to the parametrization  $\mathbf{r}_1$  gives the desired orientation shown in figure. The part  $C_2$  corresponds to the part of the boundary where  $y = x$  which can be parametrized by  $\mathbf{r}_2(t) = (1-t, 1-t)$  with  $0 \leq t \leq 1$ . The tangent vector associated with  $\mathbf{r}_2$  gives the desired orientation on  $C_2$  shown in the figure. Using  $\mathbf{r}'_1(t) = (1, 4t^3)$  and  $\mathbf{r}'_2(t) = (-1, -1)$ , we get

$$\begin{aligned}
\oint_C P dx + Q dy &= \int_0^1 \mathbf{F}(\mathbf{r}_1(t)) \cdot \mathbf{r}'_1(t) dt + \int_0^1 \mathbf{F}(\mathbf{r}_2(t)) \cdot \mathbf{r}'_2(t) dt \\
&= \int_0^1 (t \cdot t^4, (t^4)^2) \cdot (1, 4t^3) dt + \int_0^1 ((1-t)(1-t), (1-t)^2) \cdot (-1, -1) dt \\
&= \int_0^1 (t^5 + 4t^{11}) dt + \int_0^1 (-2(1-t)^2) dt \\
&= \frac{1}{6} + \frac{4}{12} + \left( \frac{2}{3}(1-t)^3 \right) \Big|_0^1 \\
&= \frac{1}{2} - \frac{2}{3} \\
&= -\frac{1}{6}
\end{aligned}$$

which agrees with the left hand side.