Midterm Exam Calculus 2 uniVGI‘SitY of
i :
9 January 2025, 18:30-20:30 %g groningen

The midterm exam consists of 4 problems. You have 120 minutes to answer
the questions. You can achieve 100 points which includes a bonus of 10 points.

1. [64+5410=20 Points] Let f : R* — R be defined as

_{ & i@y £ 00
f(x,y)—{ 0 if (z,y) = (0,0)

(a) Is f continuous at (z,y) = (0,0)7 Justify your answer.

(b) Let w = vi+ wj € R? be a unit vector, i.e. v? + w? = 1. Determine the
directional derivative D, f(0,0).

(c) Use the definition of differentiability to determine whether f is differentiable at
0,0).

2. [24-15+8=25 Points] Suppose the function F : R?* = R, (u,v) — F(u,v) is of
class C' and is such that F(-2,1) = 0, F,(—2,1) = 7 and F,(—2,1) = 5. Let
G(z,y,z) = F(a® — 2y* + 2°, 2y — %2 + 3).

(a) Check that G(—1,1,1) = 0.

(b) Show that we can solve the equation G(x,y,z) = 0 for z in terms of x and y
(i.e., as z = g(x,y) for (z,y) near (—1,1) so that g(—1,1) = 1).

(c) For the function ¢ in part (b), compute the partial derivatives g, and g, at
(x,y) = (—1,1).

3. [20 Points| Heron’s formula for the area A of a triangle whose sides have lengths z,

y and z is
A= /s(s —x)(s —y)(s — 2),

where s = %(w—i—y+z) is the so-called semiperimeter of the triangle. Use the Method
of Lagrange Multipliers to show that, for a fixed given perimeter p, the triangle with
largest area is equilateral. (Hint: in computations it can be convenient to consider
the squared area A% rather than A.)

4. [25 Points] Let D be the region in the first quadrant of R?
enclosed by y = 2 and y = z as shown in the figure on the
right. For the vector field F : R? — R?, (z,y) — P(z,y)i+ 12
Q(x,y)j = zyi+y?j, show the following equality by computing
both sides of the equation:
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where C'is the piecewise smooth curve that forms the boundary 02 04 06 08

of D with the orientation indicated by the arrows in the figure.

1



Solutions

1. (a) Using polar coordiantes (x,y) = (rcos@,rsinf) we get for r > 0,

r3cos® 0 + r3sin® 0
rcosf,rsinf) = = r(cos® 0 + sin® 0
f ) r2cos? 6 + r2sin’ 6 ( )

which goes to 0 = f(0,0) for r — 0. Hence f is continuous at (0, 0).
(b) By definition

“ ’ t—0 t

t3v3+t3w3 O
iy £~
t—0 t

= limv® 4+ w?
t—0
= v+’

(c) Choosing w = (1,0) in part (b) we get f,(0,0) = 1 and similarly choosing
u = (0,1) we get f,(0,0) = 1. The linearization of f at (0,0) hence is
L(z,y) = f(0,0) + f2(0,0)(x — 0) + £,(0,0)(y — 0) = = +y.
For the differentiability of f at (0,0) we need to study the limit of

f(xay) B L([L’,y)
(@, y)l

for (x,y) — (0,0). For (z,y) # (0,0) we have

1z, )l (a2 +y2) 2 (22 +y?)*?

Using polar coordinates we get for r > 0,

34yd 3 3 2 2
fr,y) — L(z,y) e (@+y) 284+ 9° — (v +y)(2® + y?)

2+ — (v +y)(2? + y?) 73 cos® § + r®sin® 0 — (r cos @ + rsin 0)(r? cos? 0 + r?sin? 0)
(22 + y?)3/? (r2 cos? 0 + r2sin” 0)3/2
= cos’f +sin® 0 — (cos @ + sin 6)

3 3
which for example, for § = 0 gives 0 and for § = 7/4, gives (\%) + (\/Li) —
(\% + \/Li) = _\/Li # 0 and which hence no limit for » — 0.

We conclude that f is not differentiable at (0, 0).

2. (a) To check that G(—1,1,1) = 0, note that substituting z = —1, y =1, z = 1 in
G,y 2) gives F((—1)° — 2(1? + (1)%, (—=1)(1) — (—1)2(1) + 3) = F(—1 -2+
1,—1—1+3)=F(-2,1) =0. So G(~1,1,1) = 0.

(b) As F is of class C', G is of class C' too. If 9¢(—1,1,1) # 0 then the Implicit
Function Theorem gives that near the point (z,y,2) = (—1,1,1) the level set
S ={(x,y,2) € R*|G(z,y,2z) = 0} is locally a graph over the (z,y) plane, i.e.
there exists a neighbourhood U of (z,y) = (—1,1) in R? and a neighbourhood
V of z=0in R and a function ¢ : (z,y) — z = g(x,y) such that g(—1,1) =1



and if (z,y) € U and z € V satisfy G(z,y, z) = 0 then z = g(x,y).
At an arbitrary point (z,y, z) € R? we have

G _ OF(u(z,y,2),v(z,y, 2)
82 (.Z',y,Z) - 82

~ o e T\ oz
= F,(u,v)5z* + F,(u,v)(—2?).

Filling in (u,v) = (=2,1) and (z,y,2) = (—1,1,1) and using F,(—2,1) = 7 and
F,(=2,1) =5
oG

S (CLL1) =751 45 (=(=1)%) =30 # 0.

So we can apply the Implicit Function Theorem to prove the local existence of
the function g.

From the Implicit Function Theorem we get
%(_1

and

Similarly to part (b) we have

oG . aF(U(fﬂyy, 2)7’0(1',:% Z)
a_li(x,y?Z) - 61,
= 9 V8 T a0\ oz

= Fu(u,v)32% + Fy(u,v)(y — 212).

Filling in (u,v) = (—2,1) and (x,y,2) = (—1,1,1) and using F,,(—2,1) = 7 and
F,(—=2,1) =5

oG

a—x(—1,1,1):7-3~(—1)2+5.(1—2.(—1).1):21+15:36.
giving
36 6
—1.1)=—-==——.
Similarly
oG _ OF(u(w,y, 2),v(x,y, 2)
ay ($,y,2) - ay

= a—F(u U)@—Fa—F(u v)@
 Ou 0y Ov T 0y

= F,(u,v)(—4y) + F,(u,v)x.



Filling in (u,v) = (—=2,1) and (x,y,2) = (—1,1,1) and using F,(—2,1) = 7 and
F’U(_27 1) == 5
oG
y
giving
33 11
-1,1)= — = —.
gy(—1,1) 30 10

3. We use the method of Lagrange Multipliers to determine the largest area of the
triangle. The function g(z,y,z) = = + y + 2z gives the perimeter of a triangle with
side length x, y and z. The constraint is hence given by g(x,y, z) = p for a positive
constant p. It is convenient to find the extrema of A% = s(s —x)(s —y)(s — 2) rather
than A under the constraint. Formally this is justified by the fact that a — y/a is a
continuous, positive, increasing function on [0, 00).

Let f(x,y,2) = s(s — x)(s — y)(s — z) where the semiperimeter s is given by s =
%(x +y +z) = £. Applying the method of Lagrange Multipliers gives V f(z,y, 2) =
AVyg(z,y, z) with A € R and the constraint g(z,y, z) = p, i.e.

fo(z,y,2) = Ago(z,9,2)
fy(zy,2) = Agy(z,y,2)
f(@,y,2) = Aga(z,y,2)
rT+y+z = p

which is equivalent to

—s(s—y)(s—2) = A (1)
—s(s—x)(s—z2) = A (2)
—s(s—z)(s—y) = A (3)

r+y+z = p (4)

Combining Equations (1) and (2) we see that —s(s — y)(s — 2z) = —s(s — z)(s — z),
so ¢ = y. Combining (2) and (3) gives y = z, and hence z = y = z. (Looking
at Equations (1) and (3) would also give = z.) Together with the constraint
T+y+2z=pweget x=y=z=2% where p is the perimeter of the triangle. So
for a fixed perimeter p, the triangle with largest area is equilateral (all sides of the

triangle have the same length).

4. (a) We start with the computation of the left hand side. We have

9Q op .
ox oy e
Hence
oQ ap) /1/ /1 "
e L —rdydr = —x(rx —a")dx

//D(ﬁx dy 0 Jat i 0 ( )
1 1 1|
= —2* 4+ 2°)dr = — -2 + ~a°
/i ) 5+ 5




We now compute the right hand side of the equation. We have C' = C} U
Cy where C} corresponds to the part of the bondary where y = z* which has
parametrization ry(t) = (¢,t*), 0 < ¢ < 1. The tangent vector corresponding to
the parametrization ry gives the desired orientation shown in figure. The part Cs
corresponds to the part of the boundary where y = x which can be parametrized
by ra(t) = (1 —t,1— t) with 0 < ¢t < 1. The tangent vector associated with ry
gives the desired orientation on Cy shown in the figure. Using r(t) = (1,4t3)
and ry(t) = (—1,—1), we get

édeﬁLQdy:/OlF(rl(t))-r’l(t)dt—l—/o F(rQ(It))-rg(t)dt
:/ (t~t4,(t4)2)~(1,4t3)dt+/ (L=t —1t),(1—t)?%) - (-1,-1)dt
/1(t5+4t11)dt+/1(—2(1—t)2) dt

1

% + (g(l —t)%)
2
3

0

which agrees with the left hand side.



